Highly Tm(3+) doped germanate glass and its single mode fiber for 2.0 μm laser.

نویسندگان

  • Xin Wen
  • Guowu Tang
  • Qi Yang
  • Xiaodong Chen
  • Qi Qian
  • Qinyuan Zhang
  • Zhongmin Yang
چکیده

Highly Tm(3+) doped optical fibers are urgently desirable for 2.0 μm compact single-frequency fiber laser and high-repetition-rate mode-locked fiber laser. Here, we systematically investigated the optical parameters, energy transfer processes and thermal properties of Tm(3+) doped barium gallo-germanate (BGG) glasses. Highly Tm(3+) doped BGG glass single mode (SM) fibers were fabricated by the rod-in-tube technique. The Tm(3+) doping concentration reaches 7.6 × 10(20) ions/cm(3), being the reported highest level in Tm(3+) doped BGG SM fibers. Using ultra short (1.6 cm) as-drawn highly Tm(3+) doped BGG SM fiber, a single-frequency fiber laser at 1.95 μm has been demonstrated with a maximum output power of 35 mW when in-band pumped by a home-made 1568 nm fiber laser. Additionally, a multilongitudinal-mode fiber laser at 1.95 μm has also been achieved in a 10 cm long as-drawn active fiber, yielding a maximum laser output power of 165 mW and a slope efficiency of 17%. The results confirm that the as-drawn highly Tm(3+) doped BGG SM fibers are promising in applications that require high gain and high power from a short piece of active optical fiber.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Single-Frequency Thulium Doped Fiber Laser Near 2-μm

We demonstrate highly efficient diode-pumped single-frequency fiber laser with 35% slope efficiency and 50mW output power operating near 2μm, which generated from a 2-cm long piece of highly Tm-doped germanate glass fiber pumped at 800nm. ©2007 Optical Society of America OCIS code: (060.2320) Fiber optics amplifiers and oscillators; (140.3570) Lasers, single-mode; (140.5680) Rare earth and tran...

متن کامل

220 μJ monolithic single-frequency Q-switched fiber laser at 2 μm by using highly Tm-doped germanate fibers.

We report a unique all fiber-based single-frequency Q-switched laser in a monolithic master oscillator power amplifier configuration at ~1920 nm by using highly Tm-doped germanate fibers for the first time. The actively Q-switched fiber laser seed was achieved by using a piezo to press the fiber in the fiber Bragg grating cavity and modulate the fiber birefringence, enabling Q-switching with pu...

متن کامل

Optical Properties of Tm ions in Alkali Germanate Glass

Tm-doped alkali germanate glass is investigated for use as a laser material. Spectroscopic investigations of bulk Tm-doped germanate glass are reported for the absorption, emission and luminescence decay. Tm:germanate shows promise as a fiber laser when pumped with 0.792 μm diodes because of low phonon energies. Spectroscopic analysis indicates low nonradiative quenching and pulsed laser perfor...

متن کامل

Highly efficient mid-infrared 2 μm emission in Ho/Yb-codoped germanate glass

This work reports the mid-infrared emission properties around 2 μm in Ho/Yb codoped germanate glasses. The glass not only possesses good chemical durability and good thermal stability but also has high midinfrared transmittance around 2 μm (90%). In addition, the glass possesses considerably low OH content (20.45 ppm) and large spontaneous transition probability (103.38 s) corresponding to the ...

متن کامل

The effect of La2O3 in Tm3+-doped germanate-tellurite glasses for ~2 μm emission

A germanate-tellurite glass (GeO2-TeO₂-K₂O-Nb₂O₅-La₂O₃) with thulium doping has been investigated for application as a laser material around 2.0 μm regions. Under the 808 nm laser diode pumped, intense 1.8 μm emission is obtained. Based on the absorption spectra, radiative properties are predicted using Judd-Ofelt theory. The maximum value of emission cross-section of Tm(3+) around 1.8 μm can r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Scientific reports

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016